Volume 9 Issue 1 issue 1

Article 18

Non-Linear Analysis of Axially Loaded Built-Up Open Section Cold-**Formed Columns**

mai mohamed sheta

Department of construction and building Engineering, Higher Institute for Engineering, 6th of October City, Egypt, maisheta39@gmail.com

Hanan Hussein Eltobgy

Department of Civil Engineering, Faculty of Engineering at Shoubra, Benha University, Egypt, hanan.altobgy@feng.bu.edu.eg

Mohamed Massoud El Saadawy

Housing and Building National Research Center (HBRC),87El Tahrir St., Dokki, Giza11511, POBox1770, Cairo, Egypt, m_massoud2002@yahoo.com

Khaled abdallah Gharib

Department of Civil Engineering, Faculty of Engineering at Shoubra, Benha University, Egypt, khaled.Gharib@feng.bu.edu.eg

Follow this and additional works at: https://digitalcommons.aaru.edu.jo/erjeng

Part of the Structural Engineering Commons

Recommended Citation

sheta, mai mohamed; Eltobqy, Hanan Hussein; El Saadawy, Mohamed Massoud; and Gharib, Khaled abdallah () "Non-Linear Analysis of Axially Loaded Built-Up Open Section Cold-Formed Columns," Journal of Engineering Research: Vol. 9: Iss. 1, Article 18.

DOI: https://doi.org/10.70259/engJER.2025.911908

Available at: https://digitalcommons.aaru.edu.jo/erjeng/vol9/iss1/18

This Article is brought to you for free and open access by Arab Journals Platform. It has been accepted for inclusion in Journal of Engineering Research by an authorized editor. The journal is hosted on Digital Commons, an Elsevier platform. For more information, please contact marah@aaru.edu.jo,rakan@aaru.edu.jo.

Journal of Engineering Research (JER) ©Tanta University, Faculty of Engineering

ISSN: 2356-9441

Vol. 9 - No. 1, 2025

e ISSN: 2735-4873

Non-Linear Analysis of Axially Loaded Built-Up Open Section Cold-Formed Columns

Mai M.Sheta^{1*}, Hanan H. Eltobgy², Mohamed M. El-Saadawy³, and Khaled A. M. Gharib⁴

¹ Department of construction and building Engineering, Higher Institute for Engineering, 6th of October City, Egypt

²Department of Civil Engineering, Faculty of Engineering at Shoubra, Benha University, Egypt

³Housing and Building National Research Center (HBRC),87El Tahrir St., Dokki, Giza11511, POBox1770, Cairo, Egypt

⁴Department of Civil Engineering, Faculty of Engineering at Shoubra, Benha University, Egypt

*Corresponding author's email: maisheta39@gmail.com

Abstract- Built-up open cold-formed sections are commonly used in entrances, structural corners, and window frames. These elements exhibit low torsional stiffness and are highly susceptible to cross-sectional deformation. Battened built-up cold-formed steel (CFS) open columns offer enhanced load-carrying capacity when individual profiles cannot withstand applied loads. Extensive research has focused on understanding the buckling behavior of these structural elements. However, limited studies have explored the impact of spacing between cold-formed Cchannel sections. Existing research suggests that battened columns with adequately spaced members exhibit superior structural performance compared to those with closely spaced channels. A critical factor affecting the performance of battened columns is the slenderness ratio of the unsupported length (Lz) between batten plates. Despite its significance, this aspect has been insufficiently explored in prior studies. The literature lacks defined limiting values for different column slenderness ratios, back-to-back distances between channel sections, and unsupported lengths between batten plates. Consequently, design methods proposed by various researchers may be unreliable. This study investigates the performance of axially loaded pin-ended columns, comprising two appropriately spaced lipped C-channels arranged back-to-back to form open built-up sections. Finite element models were developed using the ABAQUS platform and validated against test results from the literature. Following validation, the models were used for a comprehensive parametric analysis by varying key parameters, such as back-to-back distance, depthto-width ratios, number of battens, column slenderness

ratios, and the relative slenderness of unsupported chords. The study provides a detailed evaluation of how these parameters influence the structural performance of battened columns, offering valuable insights for design optimization and performance assessment.

Keywords- Finite element numerical simulation; battened columns; back-to-back lipped channels; ABAQUS; Steel Built-up c-channel column; Buckling; (CFS) Cold-formed steel column; Axial Load-bearing capacity; Direct Strength Method (DSM); Distortional Buckling; Local Buckling

I. INTRODUCTION

The finite element (FE) method is widely regarded by engineers as a crucial tool for parametric studies, particularly in modelling cold-formed structural members. Numerous studies have employed multipoint constraints (MPC) in ABAQUS to simulate fasteners connecting cold-formed steel (CFS) elements [1, 2, 3, 4]. Due to their high axial strength, built-up columns are frequently used in construction to enhance structural efficiency. Fasteners such as bolts, screws, welds, and rivets are employed to join individual CFS sections, forming built-up sections that serve as primary load-bearing components. These built-up sections can achieve greater axial compression capacity than separate channel sections when composite action occurs. Self-drilling screws, in particular, are advantageous as they reduce labour time and eliminate the need for pre-drilling. Extensive research has explored the buckling behaviour of axially loaded CFS components. Chen et al. [5] conducted experimental studies to assess various buckling modes of CFS-lipped channel members, focusing on local-distortional buckling and its impact on post-buckling behaviour and ultimate strength. Roy et al. [6] examined built-up

ISSN: 2356-9441 <u>Vol. 9 – No. 1, 2025</u> ©Tanta University, Faculty of Engineering

e ISSN: 2735-4873

steel columns with varying back-to-back distances between sections under axial loads. They found that increasing the vertical distance between connecting channels reduced the columns' load-bearing capacity, especially in medium and slender columns compared to stout and short columns. Roy et al. [7] performed experimental and analytical studies on self-drilling screw connections fastened built-up columns, developing equations to predict their reduced axial strength. El-Aghoury et al. [8] investigated box-section battened columns made of four angles connected by batten plates. They analyzed different column lengths and slenderness ratios (λ chord/ λ values of 0.67, 1.67, and 2.6) and recommended maintaining $\lambda \operatorname{chord}/\lambda \leq 0.5$, not exceeding 0.75 for back-to-back CFS components. Anbarasu [9] experimentally studied CFS-lipped four-angle battened columns with varying lengths and slenderness ratios (\(\lambda\) ranging from 20 to 40, and λ chord/ λ between 0.35 and 0.64). The study concluded that the $\lambda chord/\lambda$ ratio significantly influenced column performance, recommending lower values. The research also found that capacity predictions from NAS [10] and EC3 [11] were conservative. Kherbouche et al. [12] demonstrated the superior performance of closed built-up CFS sectional configurations. Dar et al. [13] conducted numerical investigations on CFS battened columns with two channels, evaluating the impact of changes in λ section (30 and 80) and λ (20 to 180). They found that strength estimates for short columns were overly optimistic based on NAS [10] and EC3 [11]. Vijayananad and Anbarasu [14,15] carried out numerical studies on lipped channel CFS battened columns and developed design guidelines, though only limited parameters were examined. This study employs finite element modelling (FEM) to simulate the behaviour of battened columns constructed from double-lipped C-channel sections, forming built-up open cold-formed steel (CFS) configurations joined with self-drilling screws. These built-up sections exhibit significant potential for superior load-bearing capacity compared to conventional single-section components. To validate the developed FEM, its results were compared against experimental test data from the literature on battened columns made of built-up CFS sections. Upon validation, the FEM was employed in a parametric analysis of built-up cold-formed steel (BCFS) battened columns. Based on the numerical findings, the study proposes enhanced design guidelines to investigate the influence of key parameters on structural behaviour, such as back-to-back spacing and slenderness ratio, along with other sectional dimensions. These guidelines aim to ensure accurate and reliable

predictions for the load-carrying capacity and failure modes of CFS battened columns.

II. FE Model investigation

A. General description

A non-linear finite element using ABAQUS [2] was employed to create a numerical model that simulates the behavior of a cold-formed steel battened column, incorporating both its elastic and plastic responses. This model aims to develop a dependable simulation of the behavior of battened columns made from built-up cold-formed steel (BCFS).

The following analysis section delineates the model's geometry and the material properties.

Buckling analysis using finite element methods necessitates two phases of evaluation. The initial phase entails identifying the analysis of the columns` buckling modes of shapes by Eigenvalue. The elastic linear analysis utilizes the (*BUCKLE) command from the library of the ABAQUS, with the applied load during a designated step. This analysis evaluates multiple buckling modes, from which the most pertinent mode identified by the Eigenvalue analysis is chosen. The second stage involves a nonlinear load-displacement analysis considering initial imperfections and nonlinearity of the material. thorough analysis identifies the columns' ultimate capacity, axial shortenings, strains, failure modes of shape and lateral displacement. .

B. Finite element mesh and materials modeling

For simulation, each detailing of the cold-formed section included end-loading plates, batten plates, and CFS channels in the ABAQUS finite element program using the S4R shell element from the ABAQUS library.

Every node within this shell element in the ABAQUS program has 6 degrees of freedom and is used in various fields. Modelling the lower and upper-end plates was accomplished with a refined mesh of three-dimensional four-node bilinear rigid quadrilateral οf

shell elements (R3D4) from the library of ABAQUS elements.

Convergence methodologies studies were conducted to identify the optimal mesh that ensures sufficient accuracy while minimizing computational time modeling cold-formed steel built-up section battened columns. A fine mesh size of 5×5 mm as (length \times width) yielded satisfactory accuracy in modeling the built-up section columns, with a finer mesh employed at the corners as illustrated in Fig. 1. A reference point was established at a perpendicular distance from the plane of each end plate, orientated towards the center of the plate, as depicted in Fig. 1.

ISSN: 2356-9441 <u>Vol. 9 – No. 1, 2025</u> ©Tanta University, Faculty of Engineering

معوت اليدانية

of Engineering e ISSN: 2735-4873

The reference points delineate the effective length of each specimen between the two articulated supports. The boundary conditions were applied to the RPs, while the load was designated to the RP of the upper-end plate. The top loading plate is modeled for the cold-formed steel C-channels using a "Tie" constraint in ABAQUS during the loading method. This command ensures that the rotations and displacements of the linked parts stay constant throughout the loading process. The tie constraint can be employed in ABAQUS [2] to connect threedimensional shell meshes with other threedimensional shell meshes automatically. The stress and strain relationship is simplified and ap proximated as bilinear or idealized finite element ana lysis. This approximation is applied to the crosssection. With its versatile capabilities, ABAQUS allows for using a multilinear stress-strain curve, demonstrating its adaptability to handling various material behaviors. This parametric study examined carbon steel properties. Steel is modeled as von misses isotropic hardening, with a minimum vield of 355 MPa and an ultimate strength (Fu) of 510 MP We used 81000 MPA for shear modulus. Steel is simulated using the bilinear elasticplastic stress-strain curve. The linear elastic part of the curve used Young's modulus of Eo = 210 GPa an d Poisson's ratio of 0.3. The nonlinear analysis of the

C. loads and Boundary conditions fastener and contact modelling

A finite element analysis employing the ABAQUS software program was developed to simulate the behavior of pin-ended built-up columns with cold-formed sections.

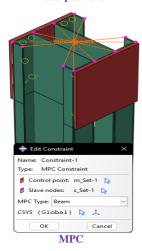
model expands isotopically with plastic hardening from a Von Mises-criterion-isotropic yield surface.

Figure 1 demonstrates the implementation of displacements and rotations (boundary conditions) at the upper and lower reference points (RPs) to repli cate the pin-ended supports.

The CONN3D2 element is characterized as a threedimensional beam connector featuring two nodes and six degrees of freedom per node were employed to represent the self-drilling screws [16,17, 18], as illustrated in Figure 1

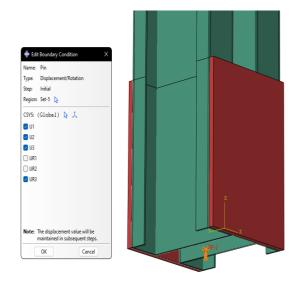
The analysis procedure mirrored methodologies used in comparable prior studies [22]. The columns were prevented from being translated in the X-and Y-directions and from rotating in the Z-axis in the upper point of the columns.

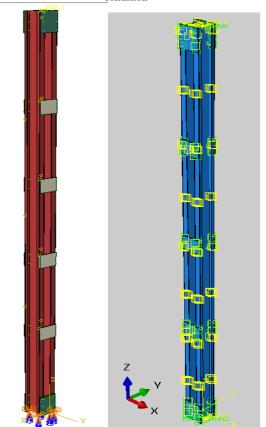
The column end conditions were constrained against translations in the X, Y, and Z axis and rotation

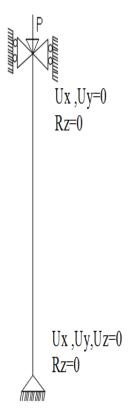

in the Z direction, as illustrated in Figure 2.

A load was applied to the force at the end plate RP. In order to apply the load

in stages, a modified version of the RIKS technique found in the ABAQUS [2] library was utilized. This column examination under axial compressive force (pu) employs the specified loading and boundary conditions.


Load positions


ISSN: 2356-9441 <u>Vol. 9 – No. 1, 2025</u> ©Tanta University, Faculty of Engineering


e ISSN: 2735-4873

Boundary conditions meshing

a) Finite elements mesh, load application, and Boundary condition

b) Interconnector bolts & arrangement of bolts Figure 1. Numerical modeling a) Finite elements mesh, load application, and Boundary condition b) arrangement of bolts

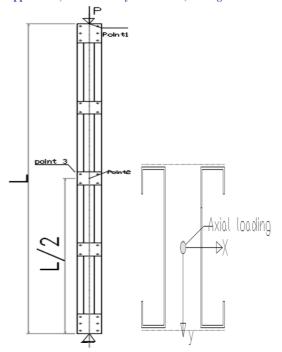


Figure 2. Loading positions at column upper loaded end and support position at column lower support end for column subjected to axial and Uni-axial loads.

ISSN: 2356-9441 <u>Vol. 9 – No. 1, 2025</u> ©Tanta University, Faculty of Engineering

e ISSN: 2735-4873

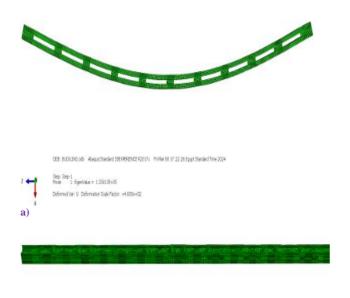


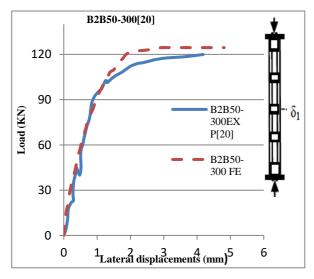
Figure3. Initial geometric imperfection modes (Eigen mode 1) for a 4.6m built-up column.

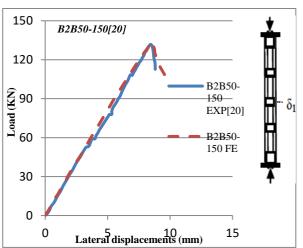
(a) Overall buckling and (b) Local buckling.

D. Initial geometric imperfections

The analyzed finite elements consider the observed magnitudes of both failure modes: local buckling and overall buckling.

Eigenvalue analyses of the column can be performed to ascertain the buckling modes and delineate the overall imperfections. The literature review [20] indicates that the average overall imperfections for the tested specimens were determined to be 1/1000 of the total length of the specimen. Imperfections were simulated in battened columns fabricated from assembled cold-formed steel sections. All buckling modes forecasted by the ABAQUS [2] Eigenvalue analysis are standardized to 1.0, Moreover, the value of the overall geometric and initial local imperfections was measured in the buckling modes, as seen in Figure 3.


E. Verification of the developed Finite Element Model

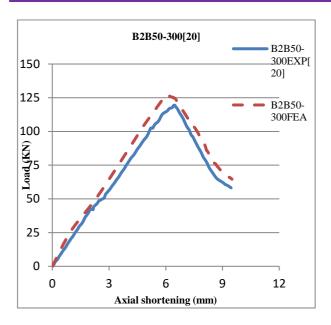

To evaluate the accuracy of the finite element model using ABAQUS [2] in simulating the actual behavior of CFS material, the outcomes of three experimental tests documented in Dabaon [20] conducted experimentally cold-formed built-up C sections,

indicating that all factors, including the overall slenderness ratio λ ranging from (50 to 110) and the factor λ chord/ λ , influenced the performance of battened columns, which were compared with the outcomes of the present finite element model.

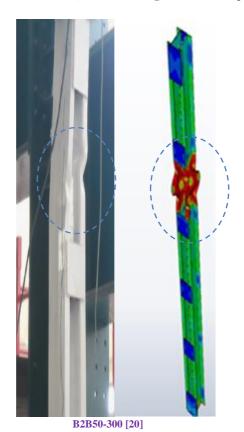
The correlations among deformed shape, load vs lateral displacement, and load versus axial shortenin g were analyzed compared to the test results, as sho wn in Fig. 4. Table 1 demonstrates a satisfactory correlation between the experimental ultimate loads and the corresponding values of the current finite element model.

The analysis of the Finite Element Analysis (FEA) results in conjunction with the experimental outcomes across all four dimensions specifically peak strength, failure mode, axial shortening, and the load versus displacement relationship reveals a significant correlation. As a result, the finite element model is well-suited for the proposed parametric studies.

A) Lateral displacement-load relationships



ISSN: 2356-9441


Vol. 9 – No. 1, 2025

©Tanta University, Faculty of Engineering

e ISSN: 2735-4873

B) Axial shortening -load relationships

B2B75-300[20]

C) Mode of failure comparison between test specimens and the finite model of [20].

Fig. 4. (A): Lateral displacement-load relationships, (B): Axial shortening, and (C): failure modes Flexural buckling (FB)and local buckling (LB)

Table1. Comparison of the strengths of battened column specimens in FEA and in the experimental test [20].

Speci men	Ptest (KN) (Exp)	mode of failure (Exp)	P F.E.A (kN)	Fail ure mod e	Ptest/ PF.E. A
B2B50 -300	119.1 1	FB+LB	123	FB+ LB	0.96
B2B75 -300	125.2	LB	126.5	LB	0.98
B2B50 -150	133.1 2	FB	134	FB	0.99
Mean	0.98				
COV					0.01

e ISSN: 2735-4873

F. Parametric study

The parametric study analyzed columns with varying back-to-back distances between the two channels (B1) and different buckling lengths (Lz), as shown in Figure 5. A total of 36 columns were evaluated, with dimensions depicted in Figure 5 and listed in Table 2. The column lengths were 2400 mm, 3000 mm, 4600 mm, and 5800 mm, classified into four series based on back-to-back distances (B1) of 40 mm, 60 mm, 80 mm, and 90 mm.

Each column was subjected to axial loading. The buckling lengths (Lz) of single channels within each series were 600 mm, 460 mm, 450 mm, 340 mm, 250 mm, and 175 mm, corresponding to slenderness ratios between batten plates (λz) of 38.7, 29.67, 29.03, 21.93, 16.12, and 11.29, respectively. According to AISI S-100:2016 [10], the overall slenderness ratios (λ = L/rmin) ranged from 50 to 162. Specimen label designations are illustrated in Figure 6.

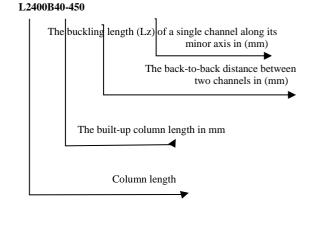


Fig 6. Label designations of the specimen

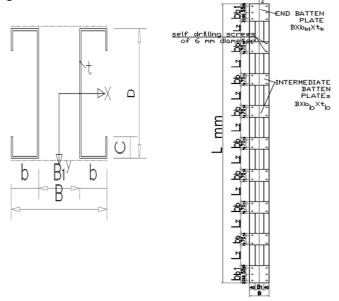


Fig.5.The cross-sectional dimensions analyzed in the parametric study.

Table 2. The parametric study's specimen dimensions:

Series	Specimen	L (mm)	Lz (mm)	B1/D	Λz	λ= L/rmin	Channel cross- section in (mm)	Batten plates dimensions in (mm)		
	L2400B40-450 2400 450 0.33 29.03 71.29	71.29	$D \times b \times c \times t$ $120 \times 40 \times 20 \times 2$	bb 100	bb1 150	tb 6				
B40	L2400B40-340	2400	340	0.33	21.93	68.71	$120\times40\times20\times2$	100	150	6
	L2400B40-175	2400	175	0.33	11.29	66.08	$120\times40\times20\times2$	100	150	6
	L3000B40-600	3000	600	0.33	38.71	90.20	$120\times40\times20\times2$	100	150	6

ISSN: 2356-9441 <u>Vol. 9 – No. 1, 2025</u> ©Tanta University, Faculty of Engineering e ISSN: 2735-4873

	L3000B40-460	3000	460	0.33	29.67	86.60	$120 \times 40 \times 20 \times 2$	100	150	6
	L3000B40-250	3000	250	0.33	16.12	82.90	$120 \times 40 \times 20 \times 2$	100	150	6
	L4600B40-450	4600	450	0.33	29.03	128.13	$120 \times 40 \times 20 \times 2$	100	150	6
	L4600B40-340	4600	340	0.33	21.93	126.70	$120 \times 40 \times 20 \times 2$	100	150	6
	L4600B40-175	4600	175	0.33	11.29	125.30	$120 \times 40 \times 20 \times 2$	100	150	6
	L5800B40-600	5800	600	0.33	38.71	162.10	$120 \times 40 \times 20 \times 2$	100	150	6
	L5800B40-460	5800	460	0.33	29.67	160.13	$120\times40\times20\times2$	100	150	6
	L5800B40-250	5800	250	0.33	16.12	158.18	$120\times40\times20\times2$	100	150	6
	L2400B60-450	2400	450	0.5	29.03	59.60	$120\times40\times20\times2$	100	150	6
	L2400B60-340	2400	340	0.5	21.93	56.49	$120\times40\times20\times2$	100	150	6
	L2400B60-175	2400	175	0.5	11.29	53.27	$120\times40\times20\times2$	100	150	6
	L3000B60-600	3000	600	0.5	38.71	75.70	$120\times40\times20\times2$	100	150	6
	L3000B60-460	3000	460	0.5	29.67	71.50	$120\times40\times20\times2$	100	150	6
D(0	L3000B60-250	3000	250	0.5	16.12	67.10	$120\times40\times20\times2$	100	150	6
B60	L4600B60-450	4600	450	0.5	29.03	103.92	$120\times40\times20\times2$	100	150	6
	L4600B60-340	4600	340	0.5	21.93	102.16	$120\times40\times20\times2$	100	150	6
	L4600B60-175	4600	175	0.5	11.29	100.40	$120\times40\times20\times2$	100	150	6
	L5800B60-600	5800	600	0.5	38.71	131.6	$120\times40\times20\times2$	100	150	6
	L5800B60-460	5800	460	0.5	29.67	129.26	$120\times40\times20\times2$	100	150	6
	L5800B60-250	5800	250	0.5	16.12	126.84	$120\times40\times20\times2$	100	150	6
	L2400B80-450	2400	450	0.67	29.03	51.99	$120\times40\times20\times2$	100	150	6
	L2400B80-340	2400	340	0.67	21.93	51.94	$120\times40\times20\times2$	100	150	6
B80	L2400B80-175	2400	175	0.67	11.29	51.94	$120\times40\times20\times2$	100	150	6
Воо	L4600B80-450	4600	450	0.67	29.03	99.56	$120\times40\times20\times2$	100	150	6
	L4600B80-340	4600	340	0.67	21.93	99.56	$120\times40\times20\times2$	100	150	6
	L4600B80-175	4600	175	0.67	11.29	99.56	$120\times40\times20\times2$	100	150	6
	L2400B90-450	2400	450	0.75	29.03	51.94	$120\times40\times20\times2$	100	150	6
	L2400B90-340	2400	340	0.75	21.93	51.94	$120\times40\times20\times2$	100	150	6
B90	L2400B90-175	2400	175	0.75	11.29	51.94	$120 \times 40 \times 20 \times 2$	100	150	6
	L4600B90-450	4600	450	0.75	29.03	99.56	120 × 40 × 20×2	100	150	6
	L4600B90-340	4600	340	0.75	21.93	99.56	120 × 40 × 20×2	100	150	6
	L4600B90-175	4600	175	0.75	11.29	99.56	$120 \times 40 \times 20 \times 2$	100	150	6

the precision and reliability of our findings.

The ultimate strengths (PFE), failure modes, and non-dimensional critical slenderness (λc) and ($\overline{\lambda}$) of the column, as established by the North American Specification [10] and euro code[11], respectively, are presented in Table 3. Also, the overall slenderness ratio of the column (λ) =L/i min considering the modified length in [10] is listed in Table 2. The relation between (λz) and (λ) studied in this paper is shown in Fig 7.

The results of this parametric research were obtained via the examination of the battened columns finite element model for built-up steel sections. Applying this comprehensive methodology ensures

Vol. 9 – No. 1, 2025

©Tanta University, Faculty of Engineering

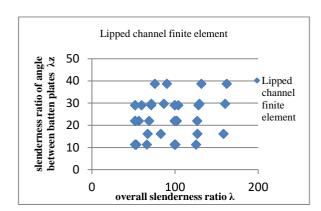


Fig.7. Critical parameters (λz and λ) were examined in the study for CFS battened columns made of channels.

III. Design rules for built-up columns

A. Design rules according to North American (AISI S-100:2016) [10]

The design code NAS [10] introduces different designs methodologies: the effective width (EWM) and direct strength (DSM) methods and Estimating the elastic critical buckling stress is the primary factor determining the accuracy of DSM. Battened columns are non-prismatic, making elastic critical buckling stress quantification difficult.

Global buckling and yielding

Global buckling and yielding refer to the failure mod es of a structural element under the combined effects of flexural, torsional loads, and flexural-torsional.

$$Pne = Ag Fn$$
 (1)

The global compressive stress, Fn, is calculated by the following equation:

$$Fn = (0.658*\lambda c2) \text{ fy } \text{ for } \lambda c \le 1.5$$

$$Fn = (\frac{0.877}{\lambda c^2}) \text{ fy } \text{ for } \lambda c > 1.5$$

$$(2)$$

$$Fcre = \frac{\pi^2 E}{(KL/r)^2}$$
 (3)

The AISI (λc) non-dimensional slenderness ratio is calculated as $\lambda c = \sqrt{(Fy / Fcre)}$,

Fcre denotes the least elastic global buckling stresses pertinent to different modes of shape, such as torsional, flexural, and flexural-torsional.

The symbol (r) indicates the full cross-section radius of gyration about the buckling axis.

$$\lambda \text{mod} = \sqrt{\left(\frac{\text{kl}}{\text{r}}\right)_0^2 + (\lambda_{\text{chord}})^2}$$
 (4)

where

 λ mod: the built-up columns modified slenderness ratio

 $\frac{kl}{r}$: the column's slenderness ratio of the whole cross -section

 λ_{chord} : $\frac{L_Z}{r_i}\!=\!$ the slenderness ratio of the chord

Local buckling in conjunction with global buckling and yielding

"effective width method"

$$Pnl = Ae Fn$$
 (5)

Calculation of the effective width of each columns can be used to determine Ae.

$$\begin{cases}
be = b & \text{where } \lambda 1 \le 0.673 \\
be = b/\lambda 1 (1 - 0.22/\lambda 1) & \text{where } \lambda 1 > 0.673
\end{cases}$$
(6)

The slenderness factor, λl , is defined as $\sqrt{(f_n / f_{crl})}$.

Fcrl =
$$\frac{\pi^2 E}{(12(1-\nu^2))\frac{t^2}{h}}$$
 (7)

"The "direct strength method" is defined in AISI-S100-2016.

$$Pnl = Pne = Ag Fn \quad for \lambda 1 \le 0.776$$

$$Pnl = [1 - 0.15 (Pcrl / Pne) 0.4] (Pcrl / Pne) 0.4 Pne$$

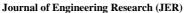
$$for \lambda 1 > 0.776 \quad \lambda 1 = \sqrt{(Pne / Pcrl)}$$

Buckling due to distortion

$$Py = Pnd = Ag Fy \text{ when } λd ≤ 0.561 (9)$$

$$Pnd = [1 - 0.25 (Pcrd / Py)0.6] (Pcrd / Py)0.6 Py$$

$$when λd > 0.561 λd = √(Py / Pcrd)$$


 $Pcrd = A_g f_{crd}$

Pn AISI = the least nominal loads from (pne, pnl and pnd)

B. Design regulations according to Eurocode 3, EN 1993-1-3:2006.

The Euro code (EN 1993-1-

1:2006) [11] uses the technique of the effective width of the studied columns for the calculation of the built-up columns' unfactored design strength (PEC3) using the formulae shown below: The class 4 un-factored strength is determined by EC3 (BS EN1993-1-3) as follows:

ISSN: 2356-9441 <u>Vol. 9 – No. 1, 2025</u> ©Tanta University, Faculty of Engineering e ISSN: 2735-4873

J R

PEC3= χ AgFy/ γ_{m1} (For Class1,2 or 3) (10) = χ AeFy/ γ_{m1} (ForClass4)

Ae and Ag denote the effective and gross area of the cross-sectional, respectively, defined in euro code [11] sections class 1, 2, 3or4.

Fy represents the yield stress, whereas χ is the reduct ion factor, which may be computed using Equation (11).

$$\chi = (1 / (\phi + \sqrt{(\phi^2 - \bar{\lambda}^2)})) \text{ but } \chi \le 1.0$$
 (11)

$$\varphi = 0.5*[1 + \alpha(\lambda^{2} - 0.2) + \lambda^{2}]$$
 (12)

The euro code non-dimensional slenderness ratio was calculated as follows:

$$\mathcal{X} = \sqrt{\text{(AgFy / Ncr)}} \text{ (ForClass1, 2 or 3)}$$

$$\mathcal{X} = \sqrt{\text{(AeFy / Ncr)}} \text{ (ForClass4) (14)}$$
(13)

$$\bar{\lambda} = (Lcr/i)^*((Ae/Ag)/\lambda 1) \tag{15}$$

$$N_{cr,t} = (1 / io^2) [GI_t + \pi^2 EI_w / I_T^2]$$
 (16)

where

Ncr, t the section torsional buckling capacity

Iw: is the constant of warping $:l_T:$ the constant of torsional, , and $l_T:$ is the effective length of the torsional.

$$\lambda_1 = \pi \quad (E/F_y) \quad ^0.5 \tag{17}$$

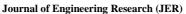
 $\lambda = \text{Maximum}(\lambda_z, \lambda_v, \lambda_T)$

Where:

χ: the applicable buckling mode reduction factor.

Lcr: the buckling length considered.

Ncr: refers to the critical buckling force for elastic design associated with specific buckling mode


Ae: the effective cross-sectional area.

FY: A proof stress of 0.2% (σ 0.2) is the same as the yield stress.

"α" imperfection factor.

Table3. A comparison of the model's strengths and the design's strengths

		FEM Res	FEM Results Different design strength						
Series	Specimen name	PuFE (KN)	Failure Mode	PNAS (KN)	λο	P EC3 (KN)	λ	PuFE / PNAS	PuFE /PEC3
	L2400B40-450	237.8	L+D	233.0	0.93	232.3	0.85	1.020	1.023
	L2400B40-340	241.4	L+D	240.0	0.89	232.3	0.85	1.005	1.038
	L2400B40-175	257.8	L+D	246.0	0.86	232.3	0.85	1.048	1.109
	L3000B40-600	179.2	L+D	177.6	1.17	176.8	1.06	1.009	1.013
	L3000B40-460	188.3	L+D	186.1	1.13	176.8	1.06	1.011	1.06
B40	L3000B40-250	197.5	L+D	195.0	1.08	176.8	1.06	1.012	1.1170
	L4600B40-450	106.9	L+F	103.5	1.67	99.9	1.63	1.033	1.070
	L4600B40-340	110.0	L+F	106.2	1.65	99.9	1.63	1.035	1.101
	L4600B40-175	115.8	L+F	108.9	1.64	99.9	1.63	1.062	1.159
	L5800B40-600	55.5	L+F	51.1	2.12	48.7	2.05	1.087	1.139
	L5800B40-460	57.8	L+D+F	54.4	2.09	48.7	2.05	1.062	1.185
	L5800B40-250	59.0	L+F	56.8	2.07	48.7	2.05	1.037	1.210
	L2400B60-450	260.7	L+D	260.0	0.78	266.7	0.68	1.002	0.977
	L2400B60-340	269.3	L+D+F	267.2	0.73	266.7	0.68	1.007	1.009
	L2400B60-175	276.7	L+D+F	274.0	0.69	266.7	0.68	1.010	1.037
	L3000B60-600	218.9	L+D	217.6	0.99	205.4	0.85	1.005	1.065
B60	L3000B60-460	223.9	L+D	222.7	0.93	205.4	0.85	1.005	1.090
	L3000B60-250	235.6	L+D+F	233.4	0.87	205.4	0.85	1.009	1.147
	L4600B60-450	155.5	L+F	154.8	1.36	142.4	1.30	1.004	1.092
	L4600B60-340	161.5	L+F	158.9	1.33	142.4	1.30	1.016	1.134
	L4600B60-175	170.3	L+D+F	163.0	1.31	142.4	1.30	1.044	1.196

ISSN: 2356-9441 <u>Vol. 9 – No. 1, 2025</u> ©Tanta University, Faculty of Engineering e ISSN: 2735-4873

	L5800B60-600	70.9	L+F	66.9	1.72	60.5	1.64	1.058	1.170
	L5800B60-460	75.0	L+D+F	72.3	1.69	60.5	1.64	1.038	1.239
	L5800B60-250	77.8	L+F	76.9	1.66	60.5	1.64	1.011	1.285
	L2400B80-450	277.6	L+D	276.7	0.68	267.0	0.67	1.003	1.039
	L2400B80-340	286.3	L+D	284.0	0.63	267.0	0.67	1.008	1.072
B80	L2400B80-175	290.6	F+D	276.8	0.67	267.0	0.67	1.050	1.088
B80	L4600B80-450	167.0	L+F	156.1	1.30	142.8	1.30	1.069	1.169
	L4600B80-340	169.8	L+F	159.2	1.30	142.8	1.30	1.066	1.189
	L4600B80-175	174.3	L+F	164.1	1.30	142.8	1.30	1.062	1.220
	L2400B90-450	285.0	L+D	276.8	0.679	267.0	0.67	1.029	1.067
	L2400B90-340	290.6	F+D	276.8	0.679	267.0	0.67	1.049	1.088
B90	L2400B90-175	296.7	L+D+F	276.8	0.67	267.0	0.67	1.072	1.111
D 90	L4600B90-450	168.9	L+D+F	157.1	1.30	142.8	1.30	1.075	1.182
	L4600B90-340	171.4	L+D+F	159.4	1.30	142.8	1.30	1.075	1.200
	L4600B90-175	176.1	L+D+F	165.1	1.30	142.8	1.30	1.066	1.233
Mean Pm = Average of the array (PFEM/Pcode)								1.035	1.120
Standard deviation								0.026	0.074
Reliability index, β								3.050	3.41
Resistance factor, Φ							0.850	0.850	

L: local buckling

D; distortion buckling

F: flexural buckling

The results obtained from the analysis of the finite element of the examined (CFS) battened columns are shown in Table 3, which also compared the findings with different analytical computations from many codes. The results indicate that the examined built-up columns with nondimensional slenderness (λc) < 0.6 mainly exhibited failure modes distortional (D) and local buckling (L). Conversely, sections with nondimensional slenderness (λc) > 1 mostly experienced failure owing to a mix of local buckling (L) and overall flexural buckling (F) failure modes.

IV. Reliability analysis

The reliability analysis following ASCE Specification [21], aiming for a reliability index (β) of 2.5, as recommended for cold-formed steel (CFS) structural members.

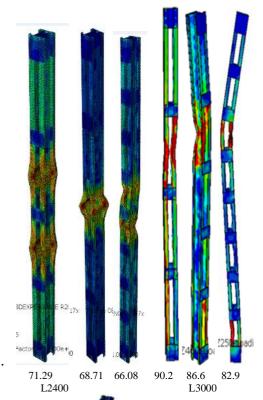
The reliability index (β) was calculated using the load combination 1.2DL + 1.6LL for concentrically loaded compression members, where DL and LL represent dead and live loads, respectively. A capacity reduction factor (ϕ) of 0.85 was applied per NAS [10] and EC3 [11], with a DL/LL ratio of 0.2.Statistical parameters for the analysis included Mm = 1.10, Fm = 1.00, Vm = 0.10, and VF = 0.05, as specified by ASCE [21]. A correction factor (Cp) was applied to account for the influence of data point quantity on the reliability index, as recommended by

NAS [10]. A reliability index above 2.5 indicates a dependable design process, with higher values reflecting greater prediction accuracy. The analysis procedure mirrored methodologies used in comparable prior studies [22].

V. Discussion of the results

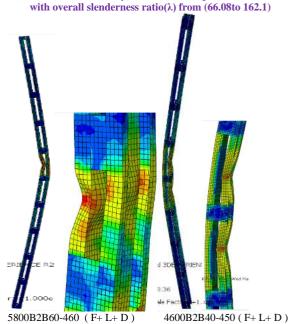
A. Failure modes' shape

For columns subjected to axial loads, three primary failure modes occur due to buckling: local buckling, flexural buckling, and distortional buckling. Table 3 summarizes the maximum load capacities and failure scenarios for each model.

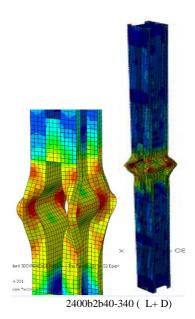


ISSN: 2356-9441

Vol. 9 - No. 1, 2025


©Tanta University, Faculty of Engineering

e ISSN: 2735-4873



ISSN: 2356-9441 <u>Vol. 9 – No. 1, 20</u>

©Tanta University, Faculty of Engineering

e ISSN: 2735-4873

b) Fig.8.Failure Mode shapes

In the column model L2400B40-340, which had an ultimate load of 241.4 KN, significant waves of local buckling were observed in the web and flange at failure. The data further indicates that buckling waves appeared in a single channel when the overall slenderness ratio (λ) ranged from 90 to 162.

Notably, models L2400B60-175 and L2400B90-175 exhibited non-linear stress distribution in one channel, as depicted in Fig. 8(b), while stress in the other channel was distributed more linearly.

In contrast, for models L3000B60-340, L3000B60-175, L3000B80-175, and L3000B90-340, an interaction between flexural and distortional buckling was observed, as shown in Fig. 8(a)

In cold-

formed channels, local buckling and distortion distortion buckling are similar.

Thus,

a single channel between batten plates has distortion al or local deformed shapes.

B. Comparison between FEA results and design Codes.

This section compares the finite element (FE) ultimate strength results with the design rules of EC3 [11] and AISI [10], as summarized in Table 3 for axial loads. Axial load capacities were determined using the practical width approach. Figures 10 and 11 illustrate the relationship between the normalized axial load ratio (pu/py) and the non-dimensional slenderness ratios, λc for AISI [10] and λc for EC3 [11]. Here, pu represents the ultimate load from the finite element analysis, and py is the yield load calculated as the product of the gross cross-sectional area (Ag) and yield stress (Fy) (Py = Ag * Fy). The predicted ultimate loads from AISI [10] and EC3 [11] closely match the FE results, as shown in Figures 10 and 11. The reliability index (β) was maintained between 2.5 and 3.5, ensuring safe and reliable design under various loading conditions. The AISI code incorporates a modified slenderness factor to account for (Lz), as shown in Equation 4. The AISI predictions were more conservative, with safety factors ranging from 1.0028 to 1.07 for axial loads, as shown in Table 3. EC3 predictions had safety factors between 1.00982 and 1.285, showing better alignment with experimental results. The EC3 design provisions account for imperfections and effective widths, particularly for medium-battened columns, where the effects of (Lz) accumulate. The slenderness ratio between batten plates (λz) significantly impacts axial strength. For instance, in columns with a length of 4600 mm and an initial λz of 11.29, increasing λz to 21.9 reduced axial strength by 4%, while further increasing it to 29.03 led to a 30% reduction. Comparisons show that AISI [10] generally provides more conservative results than EC3 [11]. However, in some cases, the FE analysis and design codes yielded highly similar outcomes, as shown in Figure 7 and documented in Table 3.

A notable observation is that as the column back-to-back distance-to-depth ratio (B1/D) decreases, the normalized axial load ratio (PUFE/Py) also decreases across different column lengths. Additionally, for the same B1/D, longer columns exhibited lower PUFE/Py ratios. Overall, the AISI design code showed satisfactory agreement with the FE modeling results for axially loaded columns.

ISSN: 2356-9441

Vol. 9 – No. 1, 2025

©Tanta University, Faculty of Engineering

e ISSN: 2735-4873

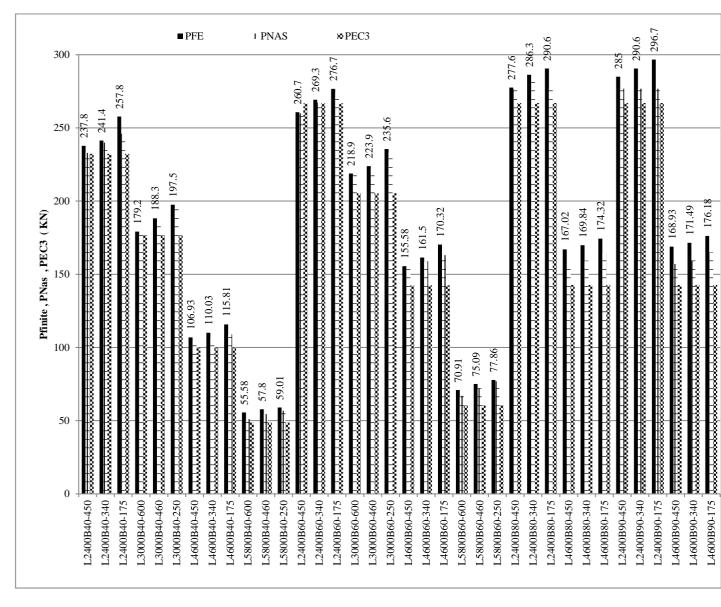


Figure 9: Comparison between results from the tests with the predictions of the design strength

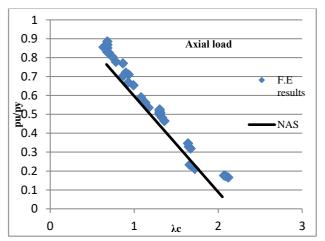


Fig10. Comparison of the finite element strengths And AISI [31] design code non-dimensional (λc)

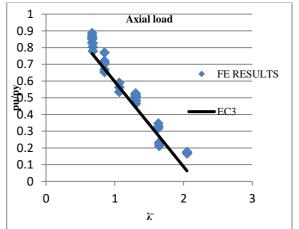


Fig11.Comparison of the finite element and EC3 [32] design non-dimension slenderness slenderness (λ)

Vol. 9 – No. 1, 2025

©Tanta University, Faculty of Engineering

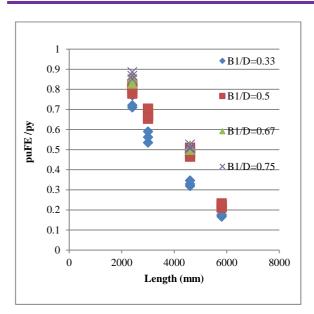


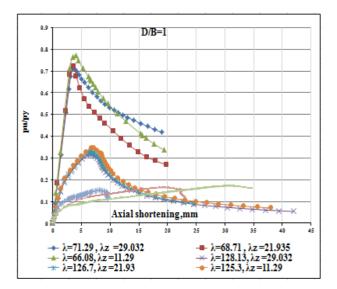
Fig12. Effect of B1/D ratio for different column lengths on the column capacity

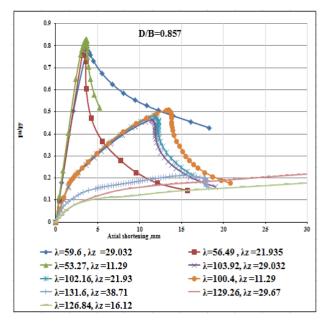
C. Axial shortening versus axial load

The axial compression magnitude was assessed at point 1, situated at the loaded end of the column, as s een in the finite element in Figure 1.

Figure 13 illustrates the CFS relationship between axial load versus

axial shortening for different models.

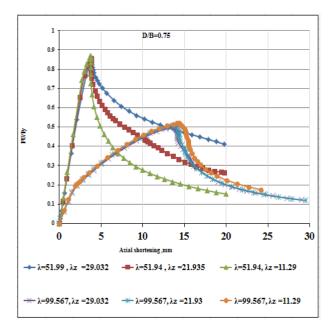

The structure consists of columns with varying slenderness ratios of channels between batten plates and overall slenderness ratios. The figure illustrates the relationship between axial shortening and axial load response of columns with the same column depth-to-width ratio (D/B).


The maximum axial strengths of columns decrease a s the overall slenderness ratio increases (λ).

Only a tiny amount of nonlinearity is seen in the plot s of axial load versus axial shortening

before the columns reach their maximum axial stren gths. Furthermore, there is a gradual decrease in the a xial strength observed in the columns after reaching their peak behavior. The columns experienced failure due to a combination of local and global (or flexural) buckling modes. The columns exhibited the failure modes identified as flexural and local buckling. When the column's depth-to-width ratio (D/B) is less than or equal to 0.75, accompanied by high overall slenderness ratios, a pronounced nonlinear response is seen in the correlation between axial load and axial shortening. For axial columns, the peak axial strength of columns and the axial shortening are influenced by the column depth-to-width ratio (D/B) for the same cross-section. For example, columns having (D/B) of 0.7058 exhibited a reduction in peak axial strengths by 8%, 7.3% and 6.7% for L=2400 and LZ=29.032, 21.935 and11.29 respectively, if the value of (D/B) is increased from 0.7058 to 0.857 and by 14%,13.9 % and11.2% if the value of (D/B) is increased from 0.75 to 1 for lz=450,340 and175 respectively. When comparing models with the same column diameter (D/B) but different loading types, it was

observed that the axially loaded column exhibited gr eater stiffness than the columns subjected to other loading types.



ISSN: 2356-9441 <u>Vol. 9 – No. 1, 20</u>

©Tanta University, Faculty of Engineering

e ISSN: 2735-4873

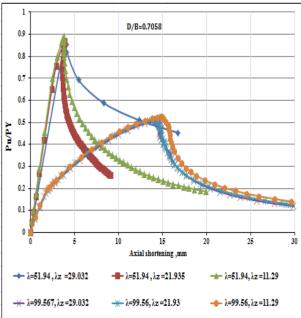


Figure 13: Relationships between load and axial shortening for axially lo aded columns

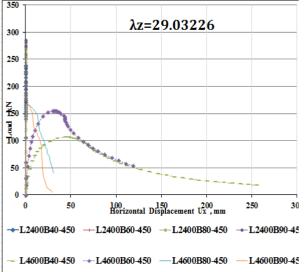
D. Load and lateral displacement (Ux and Uy)

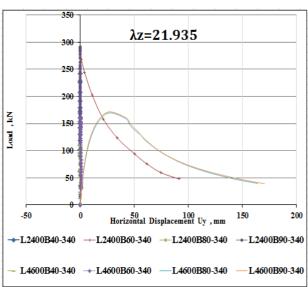
The lateral displacements were measured at two lo cations at the midpoint of the model to quantify the displacement in both the X and Y directi ons. The first location, referred to as "point2," is sho wn in the figure 2. The second location is at the midpoint of the cross-sectional flange and is designated as point 3, as depicted in Figure 2.

In the axially loaded column. the lateral displacement in the xdirection (ux) was more significant than the lateral displacement in the ydirection (uy). The relationship between the axial load and lateral displacement response of columns with different channel slenderness ratios between batten plates (λz) is depicted in Figure 14. Once the short columns reach their peak strength, regarded as insignificant, their axial strength significantly decreases. The column with a higher slenderness rati o exhibited more. excellent ductility than those with a smaller slenderness ratio. Therefore, the ductility of the column was directly correlated with t he overall slenderness ratio. The lateral displacement s (Δ) at which the columns reached their maximum a xial strengths are normalized relative to their length (L). The axial stiffness of a column is evident when it is subjected to axial load, with column dimensions of D/B) = 0.70 and 0.75.

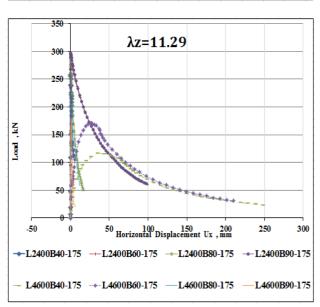
Meanwhile, columns subjected to the axial stiffness were inversely proportional to the overall slenderness ratio for an axial load with the same column depth-to-width ratio (D/B).

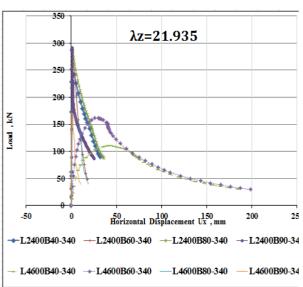
Additionally, the axial stiffness of the columns wit h channel slenderness ratios between batten

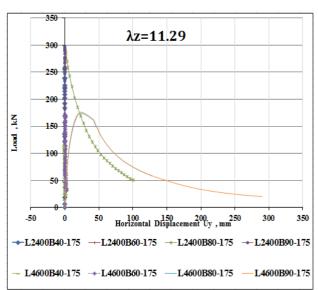

plates (λz) of 11.29 was higher than that of the col umns with slenderness ratios of 21.94 and 29.03.

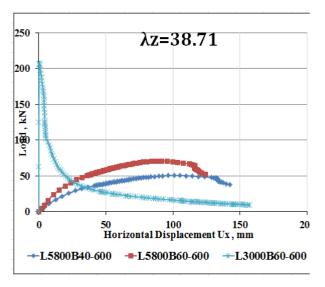

Due to the absence of stiffeners in the chord mem bers of the built-up columns, which are made of unstiffened CFS channel sections, these columns are prone to local buckling failures. As a result, the n ormalized lateral displacements of the columns showed a scattered upward trend. Similarly, increasing the channel slenderness ratios between batten plate $s(\lambda z)$ leads to higher

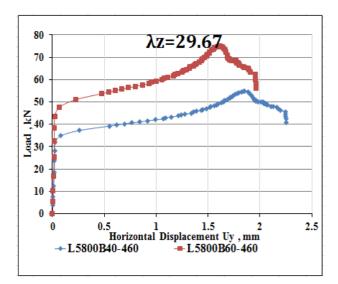
lateral drift before failure and significantly reduces s cattering.

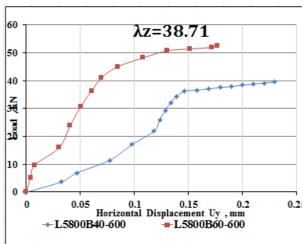


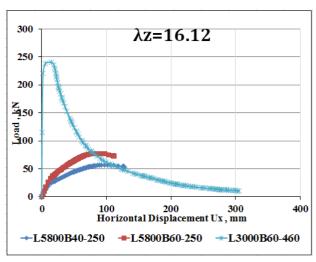

ISSN: 2356-9441 ©Tanta University, Faculty of Engineering e ISSN: 2735-4873 350 $\lambda z = 29.03226$ $\lambda z = 21.935$

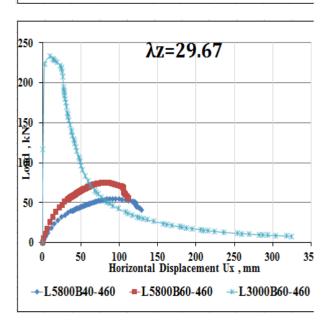







ISSN: 2356-9441 <u>Vol. 9 – No. 1, 2025</u>


©Tanta University, Faculty of Engineering


e ISSN: 2735-4873

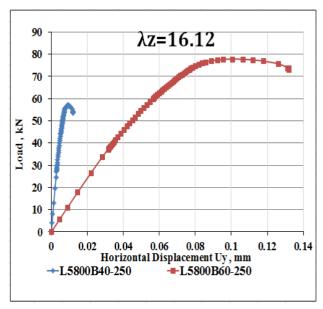


Figure 14: The relationships between load and lateral displacement (Ux) and (Uy) for columns subjected to a xial loads.

ISSN: 2356-9441 Vol. 9 – No. 1, 2025

©Tanta University, Faculty of Engineering

e ISSN: 2735-4873

VI. CONCLUSION

The investigation utilized a nonlinear finite element model to analyze the ultimate capacity of battened columns composed of two thin channel sections arranged in a back-to-back configuration. The models accounted for both geometric and material nonlinearities.

For axially loaded columns, the failure modes varied based on column length:

Short columns: Local buckling was the primary failure mode.

Long columns: Flexural buckling dominated failure. Intermediate columns: Failure occurred due to interactive buckling (a combination of local and flexural buckling).

Finite element results for short and slender battened columns closely matched EC3 and AISI-LRFD specifications. Medium columns predominantly failed due to local and flexural buckling. For sections with a high slenderness ratio, EC3 and AISI-LRFD predictions were not conservative, with EC3 being less reliable than AISI.

Geometrical imperfections ($\Delta = L/1000$) were incorporated in all loading cases, including axially loaded members.

Failure behavior varied based on buckling type:

Local buckling: The Direct Strength Method (DSM) provided un-conservative results, while Global buckling: DSM results were slightly conservative.

According to EC3, open sections yielded

conservative predictions for local buckling and slightly conservative predictions for global buckling. However, Uniaxially loaded columns demonstrated the opposite behavior.

For column cross-sections with intermediate slenderness ratios (λc), the strength reduction exhibited a concave downward relationship, with maximum strength reduction occurring under primarily axial compressive loading.

Furthermore, the ultimate strength was negatively impacted by both the slenderness ratio of channels between batten plates (λz) and large back-to-back distances between channel sections.

Conflicts of Interest: The authors declare no conflict of interest.

- [1] D. C. Fratamico and B. W. Schafer, "Numerical studies on the composite action and buckling behavior of built-up cold-formed steel columns," in 22nd International Specialty Conference on Cold-Formed Steel Structures, 2014.
- [2] ABAQUS Analysis User's Manual-Version 6.16, USA: ABAQUS Inc., 2016.
- [3] C. Yu and B. W. Schafer, "Simulation of cold-formed steel beams in local and distortional buckling with applications to the direct strength method," Journal of Constructional Steel Research, vol. 63, pp. 581-590, 2007.
- [4] Y. Li, Y. Li, S. Wang, and Z. Shen, "Ultimate load-carrying capacity of cold-formed thin-walled columns with built-up box and I section under axial compression," Thin-Walled Structures, vol. 79, pp.202-217, 2014.
- [5] M.T. Chen, B. Young, A.D. Martins, D. Camotim, P.B. Dinis, "Experimental investigation on cold-formed steel stiffened lipped channel columns undergoing local-distortional interaction," Thin-Walled Struct. 150 (2020) 106682.
- [6] Roy, K., Ting, T.C.H., Lau, H.H., Lim, J.B.P. (2018) "Nonlinear behavior of back-to-back gapped built-up cold-formed steel channel sections under compression," Journal on Constructional Steel Research, 147 257-276.
- [7] Krishanu Roy, Hieng Ho Lau, et al. "Experiments and finite element modelling of screw pattern of self-drilling screw connections for high strength cold-formed steel," Thin-Walled Structures 145 (2019) 106393.
- [8] M.A. El-Aghoury, A.H. Salem, M.T. Hanna, E.A. Amoush, "Experimental investigation for the behavior of battened beamcolumns composed of four equal slender angles," Thin-Walled Struct. 48 (9) (2010) 669–683.
- [9] M. Anbarasu, "Behavior of cold-formed steel built-up battened columns composed of four lipped angles: tests and numerical validation," Adv. Struct. Eng. 23 (1) (2020) 51–64.
- [10] AISI S-100, "North American Specification for the Design of Cold-Formed Steel Structural Members," AISI Standard, Washington, DC, 2016.
- [11] EN 1993-1-3, Eurocode 3: "Design of Steel Structures. Design of Steel Structures. Part 1–3: General Rules – Supplementary Rules for Cold-Formed Members and Sheeting," European Committee for Standardization. Brussels. 2006.
- [12] S. Kherbouche, A. Megnounif, "Numerical study and design of thin-walled cold-formed steel built-up open and closed section columns," Eng. Struct. 179 (15) (2019) 670–682.
- [13] M.A. Dar, D.R. Sahoo, A.K. Jain, "Influence of chord compactness and slenderness on axial compression behavior of built-up battened CFS columns," J. Build. Eng. 32 (2020), 101743.
- [14] S. Vijayanand, M. Anbarasu, "Parametric study and improved design guidelines of CFS battened built-up columns," Steel Compos. Struct. 40 (5) (2021) 733–746.
- [15] S. Vijayanand, M. Anbarasu, "Behavior of CFS built-up battened columns: parametric study and design recommendations," Struct. Eng. Mech. 74 (3) (2020) 381–394.
- [16] X. Zhou, Y. Xiang, Y. Shi, L. Xu, Y. Zou, "Simplified design method of cold-formed steel columns with built-up box sections," Eng. Struct. 228 (2021), 111532.
- [17] S. Nie, T. Zhou, M.R. Eatherton, J. Li, Y. Zhang, "Compressive behavior of built-up double-box columns consisting of four coldformed steel channels," Eng. Struct. 222 (2020), 111133.
- [18] S. Kechidi, D.C. Fratamico, B.W. Schafer, J.M. Castro, Bourahla., "Simulation of screw connected built-up cold-formed steel backto-back lipped channels under axial compression," Eng. Struct. 206 (2020) 110109.
- [19] H. Luo, J. Liu, C. Li, K. Chen, M. Zhang, "Ultra-rapid delivery of specialty field hospitals to combat COVID-19: lessons learned from the Leishenshan hospital project in Wuhan," Autom. Constr. 119 (2020), 103345.
- [20] M. Dabaon, E. Ellobody, K. Ramzy, "Experimental investigation of built-up cold formed steel section battened columns," Thin-Walled Struct. 92 (2015) 137–145.

REFERENCES

Journal of Engineering Research, Vol. 9 [], Iss. 1, Art. 18

Journal of Engineering Research (JER)

ISSN: 2356-9441 <u>Vol. 9 – No. 1, 2025</u> ©Tanta University, Faculty of Engineering e ISSN: 2735-4873

[21] ASCE. Minimum design loads for buildings and other structures," ASCE/SEI 7-05.American Society of Civil Engineers Standard; 2006 [22] M. Adil Dar a, Abhishek Verma b, et al, "Design of cold-formed steel battened built-up columns," Journal of Constructional Steel Research 193 (2022) 107291